Chapter 6
“The Periodic Table”

Section 6.1
Organizing the Elements

OBJECTIVES:
- Explain how elements are organized in a periodic table.

- Compare early and modern periodic tables.

- Identify three broad classes of elements.

A few elements, such as gold and copper, have been known for thousands of years - since ancient times.
Yet, only about 13 had been identified by the year 1700.
As more were discovered, chemists realized they needed a way to organize the elements.

Chemists used the properties of elements to sort them into groups.
In 1829 J. W. Dobereiner arranged elements into triads – groups of three elements with similar properties.
- One element in each triad had properties intermediate of the other two elements.
Mendeleev’s Periodic Table
- By the mid-1800s, about 70 elements were known to exist
- Dmitri Mendeleev – a Russian chemist and teacher
- Arranged elements in order of increasing atomic mass
- Thus, the first “Periodic Table”

Mendeleev
- He left blanks for yet undiscovered elements
 - When they were discovered, he had made good predictions
- But, there were problems:
 - Such as Co and Ni; Ar and K; Te and I

A better arrangement
- In 1913, Henry Moseley – British physicist, arranged elements according to increasing atomic number
- The arrangement used today
- The symbol, atomic number & mass are basic items included—textbook page 162 and 163

The Periodic Law says:
- When elements are arranged in order of increasing atomic number, there is a periodic repetition of their physical and chemical properties.
- Horizontal rows = periods
 - There are 7 periods
- Vertical column = group (or family)
 - Similar physical & chemical prop.
 - Identified by number & letter (IA, IIA)

Another possibility: Spiral Periodic Table
Three classes of elements are:
1) ** Metals**: electrical conductors, have luster, ductile, malleable
2) ** Nonmetals**: generally brittle and non-lustrous, poor conductors of heat and electricity
3) ** Metalloids**: border the line-2 sides
 - Properties are *intermediate* between metals and nonmetals

Some nonmetals are gases (O, N, Cl); some are brittle solids (S); one is a fuming dark red liquid (Br)
Notice the heavy, stair-step line?

OBJECTIVES:
- Describe the information in a periodic table.
- Classify elements based on electron configuration.
- Distinguish representative elements and transition metals.
Groups of elements - family names

- **Group 1A** – alkali metals
 - Forms a “base” (or alkali) when reacting with water (not just dissolved!)

- **Group 2A** – alkaline earth metals
 - Also form bases with water; do not dissolve well, hence “earth metals”

- **Group 7A** – halogens
 - Means “salt-forming”

Electron Configurations in Groups

- Elements can be sorted into 4 different groupings based on their electron configurations:
 1) Noble gases
 2) Representative elements
 3) Transition metals
 4) Inner transition metals

1) **Noble gases** are the elements in Group 8A (also called Group 18 or 0)
 - Previously called “inert gases” because they rarely take part in a reaction; very stable = don’t react
 - Noble gases have an electron configuration that has the outer s and p sublevels completely full

2) **Representative Elements** are in Groups 1A through 7A
 - Display wide range of properties, thus a good “representative”
 - Some are metals, or nonmetals, or metalloids; some are solid, others are gases or liquids
 - Their outer s and p electron configurations are NOT filled

3) **Transition metals** are in the “B” columns of the periodic table
 - Electron configuration has the outer s sublevel full, and is now filling the “d” sublevel
 - A “transition” between the metal area and the nonmetal area
 - Examples are gold, copper, silver
Electron Configurations in Groups

4) **Inner Transition Metals** are located below the main body of the table, in two horizontal rows:
 - Electron configuration has the outer s sublevel full, and is now filling the “f” sublevel.
 - Formerly called “rare-earth” elements, but this is not true because some are very abundant.

Group 1A are the alkali metals (but NOT H)
- Elements in the 1A-7A groups are called the representative elements.
- Formerly called “rare-earth” elements, but this is not true because some are very abundant.

Group 2A are the alkaline earth metals

Group 8A are the noble gases
- Group 7A is called the halogens.

Do you notice any similarity in these configurations of the alkali metals?
Do you notice any similarity in the configurations of the noble gases?

1s² He
1s²2s²2p⁶ Ne
1s²2s²2p⁶3s²³p⁶ Ar
1s²2s²2p⁶3s²³p⁶4s²3d¹⁰⁴p⁶ Kr
1s²2s²2p⁶3s²³p⁶4s²3d¹⁰⁴p⁶5s²4d¹⁰⁵p⁶ Xe
1s²2s²2p⁶3s²³p⁶4s²3d¹⁰⁴p⁶5s²4d¹⁰⁵p⁶⁰ 5p⁶6s²⁴f²⁴d²⁵p²⁶ Rn

Elements in the s - blocks

- Alkali metals all end in s¹
- Alkaline earth metals all end in s²

- really should include He, but it fits better in a different spot, since He has the properties of the noble gases, and has a full outer level of electrons.

Transition Metals - d block

Note the change in configuration.

The P-block

- Each row (or period) is the energy level for s and p orbitals.

F - block

- Called the “inner transition elements”
The “d” orbitals fill up in levels 1 less than the period number, so the first d is 3d even though it’s in row 4.

The “f” orbitals start filling at 4f, and are 2 less than the period number.

Section 6.3 Periodic Trends

OBJECTIVES:
- **Describe trends** among the elements for **atomic size**.

OBJECTIVES:
- **Explain** how **ions** form.

OBJECTIVES:
- **Describe periodic trends** for first ionization energy, ionic size, and electronegativity.

First problem: Where do you start measuring from?
The electron cloud doesn’t have a definite edge.
They get around this by measuring more than 1 atom at a time.
Atomic Size

Measure the Atomic Radius - this is half the distance between the two nuclei of a diatomic molecule.

ALL Periodic Table Trends

- **Influenced by three factors:**
 1. **Energy Level**
 - Higher energy levels are further away from the nucleus.
 2. **Charge on nucleus (# protons)**
 - More charge pulls electrons in closer. (+ and – attract each other)
 3. **Shielding effect** (blocking effect?)

What do they influence?

- **Energy levels** and **Shielding** have an effect on the GROUP (∟)
- **Nuclear charge** has an effect on a PERIOD (∟)

#1. **Atomic Size** - Group trends

- As we increase the atomic number (or go down a group). . .
- each atom has another energy level,
- so the atoms get bigger.

#1. **Atomic Size** - Period Trends

- Going from left to right across a period, the size gets smaller.
- Electrons are in the same energy level.
- But, there is more nuclear charge.
- Outermost electrons are pulled closer.

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Period 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li</td>
<td>Na</td>
</tr>
<tr>
<td>Na</td>
<td>K</td>
</tr>
<tr>
<td>K</td>
<td>Rb</td>
</tr>
</tbody>
</table>

Atomic Radius (pm)

<table>
<thead>
<tr>
<th>Atomic Number</th>
<th>Atomic Radius (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>3</td>
</tr>
<tr>
<td>Li</td>
<td>10</td>
</tr>
<tr>
<td>Na</td>
<td>3</td>
</tr>
<tr>
<td>K</td>
<td>10</td>
</tr>
<tr>
<td>Rb</td>
<td>3</td>
</tr>
</tbody>
</table>

Period 2
Some compounds are composed of particles called “ions”

- An ion is an atom (or group of atoms) that has a positive or negative charge
- Atoms are neutral because the number of protons equals electrons
- Positive and negative ions are formed when electrons are transferred (lost or gained) between atoms

Metals tend to LOSE electrons, from their outer energy level

- Sodium loses one: there are now more protons (11) than electrons (10), and thus a positively charged particle is formed = “cation”
- The charge is written as a number followed by a plus sign: Na\(^{1+}\)
- Now named a “sodium ion”

Nonmetals tend to GAIN one or more electrons

- Chlorine will gain one electron
- Protons (17) no longer equals the electrons (18), so a charge of -1
- Cl\(^{-}\) is re-named a “chloride ion”
- Negative ions are called “anions”

#2. Trends in Ionization Energy

- Ionization energy is the amount of energy required to completely remove an electron (from a gaseous atom).
- Removing one electron makes a 1+ ion.
- The energy required to remove only the first electron is called the first ionization energy.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>He</td>
<td>2731</td>
<td>5247</td>
<td>11810</td>
</tr>
<tr>
<td>Li</td>
<td>520</td>
<td>7297</td>
<td>11810</td>
</tr>
<tr>
<td>Be</td>
<td>900</td>
<td>1757</td>
<td>14840</td>
</tr>
<tr>
<td>B</td>
<td>800</td>
<td>2430</td>
<td>3569</td>
</tr>
<tr>
<td>C</td>
<td>1086</td>
<td>2352</td>
<td>4619</td>
</tr>
<tr>
<td>N</td>
<td>1402</td>
<td>2857</td>
<td>4577</td>
</tr>
<tr>
<td>O</td>
<td>1314</td>
<td>3391</td>
<td>5301</td>
</tr>
<tr>
<td>F</td>
<td>1681</td>
<td>3375</td>
<td>6045</td>
</tr>
<tr>
<td>Ne</td>
<td>2080</td>
<td>3963</td>
<td>6276</td>
</tr>
</tbody>
</table>

Table 6.1, p. 173
What factors determine IE

- The greater the nuclear charge, the greater IE.
- Greater distance from nucleus decreases IE.
- Filled and half-filled orbitals have lower energy, so achieving them is easier, lower IE.
- Shielding effect.

Shielding

- The electron on the outermost energy level has to look through all the other energy levels to see the nucleus.
- Second electron has the same shielding, if it is in the same period.

Ionization Energy - Group trends

- As you go down a group, the first IE decreases because...
 - The electron is further away from the attraction of the nucleus, and
 - There is more shielding.

Ionization Energy - Period trends

- All the atoms in the same period have the same energy level.
- Same shielding.
- But, increasing nuclear charge
- So IE generally increases from left to right.
- Exceptions at full and 1/2 full orbitals.

He has a greater IE than H.
- Both elements have the same shielding since electrons are only in the first level
- But He has a greater nuclear charge.
- Li has lower IE than H
- more shielding
- further away
- These outweigh the greater nuclear charge

- Be has higher IE than Li
- same shielding
- greater nuclear charge

- B has lower IE than Be
- same shielding
- greater nuclear charge
- By removing an electron we make s orbital half-filled

- Oxygen breaks the pattern, because removing an electron leaves it with a 1/2 filled p orbital
First Ionization Energy

- Ne has a lower IE than He
- Both are full,
- Ne has more shielding
- Greater distance

Driving Forces

- **Full Energy Levels** require lots of energy to remove their electrons.
 - Noble Gases have full orbitals.
 - Atoms behave in ways to try and achieve a noble gas configuration.

2nd Ionization Energy

- For elements that reach a filled or half-filled orbital by removing 2 electrons, 2nd IE is lower than expected.
- True for s²
- Alkaline earth metals form 2+ ions.
3rd IE
- Using the same logic s^2p^1 atoms have an low 3rd IE.
- Atoms in the aluminum family form 3+ ions.
- 2nd IE and 3rd IE are always higher than 1st IE!!

Trends in Ionic Size: Cations
- Cations form by losing electrons.
- Cations are smaller than the atom they came from – not only do they lose electrons, they lose an entire energy level.
- Metals form cations.
- Cations of representative elements have the noble gas configuration before them.

Ionic size: Anions
- Anions form by gaining electrons.
- Anions are bigger than the atom they came from – have the same energy level, but a greater area the nuclear charge needs to cover.
- Nonmetals form anions.
- Anions of representative elements have the noble gas configuration after them.

Configuration of Ions
- Ions always have noble gas configurations ($= a$ full outer level)
- Na atom is: $1s^22s^22p^63s^1$
- Forms a 1+ sodium ion: $1s^22s^22p^6$
- Same configuration as neon.
- Metals form ions with the configuration of the noble gas before them - they lose electrons.

Configuration of Ions
- Non-metals form ions by gaining electrons to achieve noble gas configuration.
- They end up with the configuration of the noble gas after them.

Ion Group trends
- Each step down a group is adding an energy level.
- Ions therefore get bigger as you go down, because of the additional energy level.

Li$^{1+}$ Na$^{1+}$ K$^{1+}$ Rb$^{1+}$ Cs$^{1+}$
Ion Period Trends
- Across the period from left to right, the nuclear charge increases - so they get smaller.
- Notice the energy level changes between anions and cations.

Size of Isoelectronic ions
- Iso- means “the same”
- Isoelectronic ions have the same # of electrons
 - Al\(^{3+}\), Mg\(^{2+}\), Na\(^{+}\), Ne\(^{-}\), F\(^{-}\), O\(^{2-}\), and N\(^{3-}\)
 - all have 10 electrons
 - all have the same configuration: 1s\(^2\)2s\(^2\)2p\(^6\) (which is the noble gas: neon)

Size of Isoelectronic ions?
- Positive ions that have more protons would be smaller (more protons would pull the same # of electrons in closer)

#3. Trends in Electronegativity
- Electronegativity is the tendency for an atom to attract electrons to itself when it is chemically combined with another element.
- They share the electron, but how equally do they share it?
- An element with a big electronegativity means it pulls the electron towards itself strongly!

Electronegativity Group Trend
- The further down a group, the farther the electron is away from the nucleus, plus the more electrons an atom has.
- Thus, more willing to share.
- Low electronegativity.

Electronegativity Period Trend
- Metals are at the left of the table.
- They let their electrons go easily
- Thus, low electronegativity
- At the right end are the nonmetals.
- They want more electrons.
- Try to take them away from others
- High electronegativity.
The arrows indicate the trend: Ionization energy and Electronegativity increase in these directions.

Atomic size and Ionic size increase in these directions:

Summary Chart of the trends:
Figure 6.22, p.178

End of Chapter 6