

Early history of astronomy

* Ancient Greeks
- Used philosophical arguments to explain natural phenomena
- Also used some observational data
- Most ancient Greeks held a geocentric (Earthcentered) view of the universe
- "Earth-centered" view
- Earth was a motionless sphere at the center of the universe

Early history of astronomy

* Ancient Greeks
- Most ancient Greeks held a geocentric (Earthcentered) view of the universe
- Seven heavenly bodies (planetai)
- Changed position in sky
- The seven wanderers included the
- Sun
- Moon
- Mercury through Saturn (excluding Earth)

Early history of astronomy
Ancient Greeks
- Most ancient Greeks held a geocentric (Earth-
centered) view of the universe
• Seven heavenly bodies (planetai)
• Changed position in sky
- The seven wanderers included the
• Sun
• Moon
• Mercury through Saturn (excluding Earth)

Early history of astronomy

* Ancient Greeks
- Most ancient Greeks held a geocentric (Earthcentered) view of the universe
- "Earth-centered" view
- Stars were on the celestial sphere
- Transparent, hollow sphere
- Celestial sphere turns daily around Earth

Early history of astronomy

* Ancient Greeks
- Aristarchus (312-230 B.C.) was the first Greek to profess a Sun-centered, or heliocentric, universe
- Planets exhibit an apparent westward drift
- Called retrograde motion
- Occurs as Earth, with its faster orbital speed, overtakes another planet

Early history of astronomy

* Birth of modern astronomy
- Five noted scientists
- Tycho Brahe (1546-1601)
- Precise observer
- Tried to find stellar parallax - the apparent shift in a star's position due to the revolution of Earth
- Did not believe in the Copernican system because he was unable to observe stellar parallax

The universe according to Ptolemy, second century A.D.

Figure 21.4 A

Early history of astronomy
\star Birth of modern astronomy

- 1500 s and 1600 s
- Five noted scientists
- Nicolaus Copernicus (1473-1543)
- Concluded Earth was a planet
- Constructed a model of the solar system that put the Sun at the center, but he used circular orbits for the planets
- Ushered out old astronomy

Early history of astronomy

* Birth of modern astronomy
- Five noted scientists
- Johannes Kepler (1571-1630)
- Ushered in new astronomy
- Planets revolve around the Sun
- Three laws of planetary motion
- Orbits of the planets are elliptical
- Planets revolve around the Sun at varying speed

Early history of astronomy

\star Birth of modern astronomy

- Five noted scientists
- Johannes Kepler (1571-1630)
- Three laws of planetary motion
- There is a proportional relation between a planet's orbital period and its distance to the Sun (measured in astronomical units (AU's) - one AU averages about 150 million kilometers, or 93 million miles)

Positions in the sky

\& Equatorial system of location

- Two locational components
- Right ascension - the angular distance measured eastward along the celestial equator from the position of the vernal equinox

Earth motions

*Two primary motions

- Revolution
- The motion of a body, such as a planet or moon, along a path around some point in space
- Earth's orbit is elliptical
- Earth is closest to the Sun (perihelion) in January
- Earth is farthest from the Sun (aphelion) in July
- The plane of the ecliptic is an imaginary plane that connects Earth's orbit with the celestial sphere

Earth motions

* Other Earth motions
- Precession
- Very slow Earth movement
- Direction in which Earth's axis points continually changes
- Movement with the solar system in the direction of the star Vega
- Revolution with the Sun around the galaxy
- Movement with the galaxy within the universe

Figure 21.22

Motions of the Earth-Moon system
\& Lunar motions
-Earth-Moon

- Synodic month
- Cycle of the phases
- Takes $291 / 2$ days
- Cycle of the phases
- Takes $291 / 2$ days
- Sidereal month
- True period of the Moon's revolution around Earth
- Takes 27 1/3 days

Motions of the Earth-Moon system
*Phases of the Moon

- When viewed from above the North Pole, the Moon orbits Earth in a counterclockwise (eastward) direction
- The relative positions of the Sun, Earth, and Moon constantly change
- Lunar phases are a consequence of the motion of the Moon and the sunlight that is reflected from its surface

Motions of the Earth-Moon system
\& Lunar motions

- Earth-Moon
- The difference of two days between the synodic and sidereal cycles is due to the Earth-Moon system also moving in an orbit around the Sun
- Moon's period of rotation about its axis and its revolution around Earth are the same, 27 1/3 days
- Causes the same lunar hemisphere to always face Earth

Motions of the Earth-Moon system

```
* Eclipses
```

- Two types of eclipses
- Lunar eclipse
- Because the Moon's orbit is inclined about 5 degrees to the plane of the ecliptic, during most of the times of new- and full-Moon the Moon is above or below the plane, and no eclipse can occur
- The usual number of eclipses is four per year

