
A) SI Units, Scientific Notation, Measurement, Accuracy, Precision, Error

Math and Units

Sl Unit Prefixes
\qquadName Symbol giga- G 10^{9} mega- M 10^{6} kilo- k 10^{3} deci- d 10^{-1} centi- c 10^{-2} milli- m 10^{-3} micro- H 10^{-6} nano- n 10^{-9} pico- p 10^{-12}

Scientific Notation

$$
M \times 10^{n}
$$

- M is the coefficient $1<M<10$
- 10 is the base
- n is the exponent or power of 10

Other Examples:

5.45E6
 $5.45 \times 10^{\wedge} 6$

Limits of Measurement

- Accuracy and Precision

Example: Accuracy

- Who is more accurate when measuring a book that has a true length of 17.0 cm ?
Susan:
$17.0 \mathrm{~cm}, 16.0 \mathrm{~cm}, 18.0 \mathrm{~cm}, 15.0 \mathrm{~cm}$
Amy:
$15.5 \mathrm{~cm}, 15.0 \mathrm{~cm}, 15.2 \mathrm{~cm}, 15.3 \mathrm{~cm}$

Precision - a measure of how close a series of measurements are to one another. A measure of how exact a measurement is.

Example: Precision

Who is more precise when measuring the same 17.0 cm book?

Susan:
$17.0 \mathrm{~cm}, 16.0 \mathrm{~cm}, 18.0 \mathrm{~cm}, 15.0 \mathrm{~cm}$

Amy:
$15.5 \mathrm{~cm}, 15.0 \mathrm{~cm}, 15.2 \mathrm{~cm}, 15.3 \mathrm{~cm}$

Error

Error= experimental -accepted value

B) Significant Figures

Sig Figs

- When the decimal is present, start counting from the left.
- When the decimal is absent, start counting from the right.

■ Zeroes encountered before a non zero digit do not count.

Sig Figs in Addition/Subtraction

The result has the same number of decimal places as the number in the operation with the least decimal places.
Ex: $\quad 2.33 \mathrm{~cm}$
$+3.0 \mathrm{~cm}$
5.3 cm

Sig Figs in Multiplication/Division

- The answer has the same sig figs as the factor with the least sig figs.
- Ex: 3.22 cm
x 2.0 cm
$6.4 \mathrm{~cm}^{2}$

Counting Numbers
Counting numbers have infinite sig figs.

- Ex: 3 apples

	Base SI Units	
Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Temperature	kelvin	K
Time	second	s
Amount of	mole	mol
Substance		
Luminous Intensity	candela	cd
Electric Current	ampere	a

Derived SI Units (examples)		
Quantity	unit	Symbol
Volume	cubic meter	m^{3}
Density	kilograms per cubic meter	$\mathrm{kg} / \mathrm{m}^{3}$
Speed	meter per second	m / s
Newton	$\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}$	N
Energy	Joule $\left(\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}^{2}\right)$	J
Pressure	Pascal $\left({\mathrm{kg} /\left(\mathrm{ms}^{2}\right)}^{\mathrm{Pa}}\right.$	

Farenheit and Celsius

$$
{ }^{\circ} \mathrm{F}=\left(1.8^{\circ} \mathrm{C}\right)+32
$$

Sl Unit Prefixes
\qquadName Symbol giga- G 10^{9} mega- M 10^{6} kilo- k 10^{3} deci- d 10^{-1} centi- c 10^{-2} milli- m 10^{-3} micro- m 10^{-6} nano- n 10^{-9} pico- p 10^{-12}

SI Unit Prefixes for Length

Name	Symbol		Analogy
gigameter	Gm	10^{9}	
megameter	Mm	10^{6}	
kilometer	km	10^{3}	
decimeter	dm	10^{-1}	
centimeter	cm	10^{-2}	
millimeter	mm	10^{-3}	
micrometer	$\mu \mathrm{m}$	10^{-6}	
nanometer	nm	10^{-9}	
picometer	pm	10^{-12}	

D)
 Factor Label Method of Unit Conversion-
 Dimensional Analysis

Convert 7,000m to km

$7,000 \mathrm{~m} \times 1 \mathrm{~km}=7 \mathrm{~km}$
1,000m

