

SI Unit Prefixes				
	Name	Symbol		
	giga-	G	10 ⁹	
	mega-	М	10 ⁶	
	kilo-	k	10 ³	
	deci-	d	10 ⁻¹	
	centi-	С	10 ⁻²	
	milli-	m	10 ⁻³	
	micro-	μ	10 ⁻⁶	
	nano-	n	10 ⁻⁹	
	pico-	р	10 ⁻¹²	

Example: Precision

Who is more precise when measuring the same 17.0cm book?

Susan: 17.0cm, 16.0cm, 18.0cm, 15.0cm

Amy: 15.5cm, 15.0cm, 15.2cm, 15.3cm

Example: Evaluate whether the			
following are precise, accurate or			
both.			
Ø	0	C	
Accurate	Not Accurate	Accurate	
Not Precise	Precise	Precise	

Significant Figures

The significant figures in a measurement include all of the digits that are known, plus one last digit that is estimated.

How many sig figs are there in a given measurement?

Sig Figs

- When the decimal is present, start counting from the left.
- When the decimal is absent, start counting from the right.
- Zeroes encountered before a non zero digit do not count.

C) International System of Units and Prefixes

Base SI Units		
Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Temperature	kelvin	K
Time	second	S
Amount of Substance	mole	mol
Luminous Intensity	candela	cd
Electric Current	ampere	а

Derived SI Units (examples)				
Quantity	unit	Symbol		
Volume	cubic meter	m ³		
Density	kilograms per cubic meter	kg/m³		
Speed	meter per second	m/s		
Newton	kg m/ s²	Ν		
Energy	Joule (kg m ² /s ²)	J		
Pressure	Pascal (kg/(ms ²)	Pa		

Note:

1 Cal = 1kcal =1000cal

SI Unit Prefixes				
Name	Symbol			
giga-	G	10 ⁹		
mega-	М	10 ⁶		
kilo-	k	10 ³		
deci-	d	10 ⁻¹		
centi-	С	10 ⁻²		
milli-	m	10 ⁻³		
micro-	μ	10 ⁻⁶		
nano-	n	10 ⁻⁹		
pico-	р	10 ⁻¹²		

PP.	SILInit Prefixes for Length				
	Name	Symbol		Analogy	
	gigameter	Gm	10 ⁹		
	megameter	Mm	10 ⁶		
	kilometer	km	10 ³		
	decimeter	dm	10 ⁻¹		
	centimeter	cm	10 ⁻²		
	millimeter	mm	10 ⁻³		
	micrometer	μm	10 ⁻⁶		
	nanometer	nm	10 ⁻⁹		
	picometer	pm	10 ⁻¹²		

D)

Factor Label Method of Unit Conversion-Dimensional Analysis

Factor-Label Method

Example: Convert 5km to m:

NEW UNIT 5km x <u>1,000m</u> =5,000m km

OLD UNIT

Convert 7,000m to km

7,000m x <u>1 km</u> = **7 km** 1,000m

Convert 2.45cs to s

■ 2.45cs x <u>1 s</u> = **0.0245s** 100cs

Convert 55.00 km/h to m/s 55.00 km x 1000 m x 1 h h 1 km 3600 s